Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21951, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081944

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a dominant gain-of-function mutation in the huntingtin gene, resulting in an elongated polyglutamine repeat in the mutant Huntingtin (mHtt) that mediates aberrant protein interactions. Previous studies implicated the ubiquitin-proteasome system in HD, suggesting that restoring cellular proteostasis might be a key element in suppressing pathology. We applied genetic interaction tests in a Drosophila model to ask whether modulating the levels of deubiquitinase enzymes affect HD pathology. By testing 32 deubiquitinase genes we found that overexpression of Yod1 ameliorated all analyzed phenotypes, including neurodegeneration, motor activity, viability, and longevity. Yod1 did not have a similar effect in amyloid beta overexpressing flies, suggesting that the observed effects might be specific to mHtt. Yod1 overexpression did not alter the number of mHtt aggregates but moderately increased the ratio of larger aggregates. Transcriptome analysis showed that Yod1 suppressed the transcriptional effects of mHtt and restored the expression of genes involved in neuronal plasticity, vesicular transport, antimicrobial defense, and protein synthesis, modifications, and clearance. Furthermore, Yod1 overexpression in HD flies leads to the upregulation of genes involved in transcriptional regulation and synaptic transmission, which might be part of a response mechanism to mHtt-induced stress.


Assuntos
Drosophila , Doença de Huntington , Animais , Peptídeos beta-Amiloides/genética , Enzimas Desubiquitinantes/genética , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Mutação , Ubiquitina/genética
2.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569316

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the Huntingtin gene. Transcriptional dysregulation is one of the main cellular processes affected by mutant Huntingtin (mHtt). In this study, we investigate the alterations in miRNA and mRNA expression levels in a Drosophila model of HD by RNA sequencing and assess the functional effects of misregulated miRNAs in vivo. We found that in head samples of HD flies, the level of 32 miRNAs changed significantly; half of these were upregulated, while the other half were downregulated. After comparing miRNA and mRNA expression data, we discovered similarities in the impacted molecular pathways. Additionally, we observed that the putative targets of almost all dysregulated miRNAs were overrepresented among the upregulated mRNAs. We tested the effects of overexpression of five misregulated miRNAs in the HD model and found that while mir-10 and mir-219 enhanced, mir-137, mir-305, and mir-1010 ameliorated mHtt-induced phenotypes. Based on our results, we propose that while altered expression of mir-10, mir-137, and mir-1010 might be part of HD pathology, the upregulation of mir-305 might serve as a compensatory mechanism as a response to mHtt-induced transcriptional dysregulation.


Assuntos
Doença de Huntington , MicroRNAs , Animais , Doença de Huntington/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Repetições de Trinucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Huntingtina/genética , Modelos Animais de Doenças
3.
RNA ; 29(10): 1557-1574, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460154

RESUMO

Assemblysomes are EDTA- and RNase-resistant ribonucleoprotein (RNP) complexes of paused ribosomes with protruding nascent polypeptide chains. They have been described in yeast and human cells for the proteasome subunit Rpt1, and the disordered amino-terminal part of the nascent chain was found to be indispensable for the accumulation of the Rpt1-RNP into assemblysomes. Motivated by this, to find other assemblysome-associated RNPs we used bioinformatics to rank subunits of Saccharomyces cerevisiae protein complexes according to their amino-terminal disorder propensity. The results revealed that gene products involved in DNA repair are enriched among the top candidates. The Sgs1 DNA helicase was chosen for experimental validation. We found that indeed nascent chains of Sgs1 form EDTA-resistant RNP condensates, assemblysomes by definition. Moreover, upon exposure to UV, SGS1 mRNA shifted from assemblysomes to polysomes, suggesting that external stimuli are regulators of assemblysome dynamics. We extended our studies to human cell lines. The BLM helicase, ortholog of yeast Sgs1, was identified upon sequencing assemblysome-associated RNAs from the MCF7 human breast cancer cell line, and mRNAs encoding DNA repair proteins were overall enriched. Using the radiation-resistant A549 cell line, we observed by transmission electron microscopy that 1,6-hexanediol, an agent known to disrupt phase-separated condensates, depletes ring ribosome structures compatible with assemblysomes from the cytoplasm of cells and makes the cells more sensitive to X-ray treatment. Taken together, these findings suggest that assemblysomes may be a component of the DNA damage response from yeast to human.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RecQ Helicases/genética , Ácido Edético/metabolismo , Dano ao DNA , RNA/metabolismo , Ribonucleoproteínas/genética , Ribossomos/genética , Ribossomos/metabolismo
4.
Nat Microbiol ; 8(3): 410-423, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759752

RESUMO

Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.


Assuntos
Bacteriófagos , Genes Bacterianos , Antibacterianos/farmacologia , Metagenômica , Bacteriófagos/genética , Bactérias/genética
5.
Front Immunol ; 14: 1322381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187383

RESUMO

Background: Insects have specialized cell types that participate in the elimination of parasites, for instance, the lamellocytes of the broadly studied species Drosophila melanogaster. Other drosophilids, such as Drosophila ananassae and the invasive Zaprionus indianus, have multinucleated giant hemocytes, a syncytium of blood cells that participate in the encapsulation of the eggs or larvae of parasitoid wasps. These cells can be formed by the fusion of hemocytes in circulation or originate from the lymph gland. Their ultrastructure highly resembles that of the mammalian megakaryocytes. Methods: Morphological, protein expressional, and functional features of blood cells were revealed using epifluorescence and confocal microscopy. The respective hemocyte subpopulations were identified using monoclonal antibodies in indirect immunofluorescence assays. Fluorescein isothiocyanate (FITC)-labeled Escherichia coli bacteria were used in phagocytosis tests. Gene expression analysis was performed following mRNA sequencing of blood cells. Results: D. ananassae and Z. indianus encapsulate foreign particles with the involvement of multinucleated giant hemocytes and mount a highly efficient immune response against parasitoid wasps. Morphological, protein expressional, and functional assays of Z. indianus blood cells suggested that these cells could be derived from large plasmatocytes, a unique cell type developing specifically after parasitoid wasp infection. Transcriptomic analysis of blood cells, isolated from naïve and wasp-infected Z. indianus larvae, revealed several differentially expressed genes involved in signal transduction, cell movements, encapsulation of foreign targets, energy production, and melanization, suggesting their role in the anti-parasitoid response. A large number of genes that encode proteins associated with coagulation and wound healing, such as phenoloxidase activity factor-like proteins, fibrinogen-related proteins, lectins, and proteins involved in the differentiation and function of platelets, were constitutively expressed. The remarkable ultrastructural similarities between giant hemocytes and mammalian megakaryocytes, and presence of platelets, and giant cell-derived anucleated fragments at wound sites hint at the involvement of this cell subpopulation in wound healing processes, in addition to participation in the encapsulation reaction. Conclusion: Our observations provide insights into the broad repertoire of blood cell functions required for efficient defense reactions to maintain the homeostasis of the organism. The analysis of the differentiation and function of multinucleated giant hemocytes gives an insight into the diversification of the immune mechanisms.


Assuntos
Hemócitos , Vespas , Animais , Drosophila melanogaster , Diferenciação Celular , Drosophila , Plaquetas , Mamíferos
6.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499499

RESUMO

Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by the expansion of a polyglutamine-coding CAG repeat in the Huntingtin gene. One of the main causes of neurodegeneration in HD is transcriptional dysregulation that, in part, is caused by the inhibition of histone acetyltransferase (HAT) enzymes. HD pathology can be alleviated by increasing the activity of specific HATs or by inhibiting histone deacetylase (HDAC) enzymes. To determine which histone's post-translational modifications (PTMs) might play crucial roles in HD pathology, we investigated the phenotype-modifying effects of PTM mimetic mutations of variant histone H3.3 in a Drosophila model of HD. Specifically, we studied the mutations (K→Q: acetylated; K→R: non-modified; and K→M: methylated) of lysine residues K9, K14, and K27 of transgenic H3.3. In the case of H3.3K14Q modification, we observed the amelioration of all tested phenotypes (viability, longevity, neurodegeneration, motor activity, and circadian rhythm defects), while H3.3K14R had the opposite effect. H3.3K14Q expression prevented the negative effects of reduced Gcn5 (a HAT acting on H3K14) on HD pathology, while it only partially hindered the positive effects of heterozygous Sirt1 (an HDAC acting on H3K14). Thus, we conclude that the Gcn5-dependent acetylation of H3.3K14 might be an important epigenetic contributor to HD pathology.


Assuntos
Histonas , Doença de Huntington , Animais , Histonas/metabolismo , Lisina/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Doença de Huntington/metabolismo , Drosophila/metabolismo
7.
Viruses ; 14(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36366438

RESUMO

The presence of viruses is less explored in Mucoromycota as compared to other fungal groups such as Ascomycota and Basidiomycota. Recently, more and more mycoviruses are identified from the early-diverging lineages of fungi. We have determined the genome of 11 novel dsRNA viruses in seven different Umbelopsis strains with next-generation sequencing (NGS). The identified viruses were named Umbelopsis ramanniana virus 5 (UrV5), 6a (UrV6a); 6b (UrV6b); 7 (UrV7); 8a (UrV8a); 8b (UrV8b); Umbelopsis gibberispora virus 1 (UgV1); 2 (UgV2) and Umbelopsis dimorpha virus 1a (UdV1a), 1b (UdV1b) and 2 (UdV2). All the newly identified viruses contain two open reading frames (ORFs), which putatively encode the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively. Based on the phylogeny inferred from the RdRp sequences, eight viruses (UrV7, UrV8a, UrV8b, UgV1, UgV2, UdV1a, UdV1b and UdV2) belong to the genus Totivirus, while UrV5, UrV6a and UrV6b are placed into a yet unclassified but well-defined Totiviridae-related group. In UrV5, UgV1, UgV2, UrV8b, UdV1a, UdV2 and UdV1b, ORF2 is predicted to be translated as a fusion protein via a rare +1 (or -2) ribosomal frameshift, which is not characteristic to most members of the Totivirus genus. Virus particles 31 to 32 nm in diameter could be detected in the examined fungal strains by transmission electron microscopy. Through the identification and characterization of new viruses of Mucoromycota fungi, we can gain insight into the diversity of mycoviruses, as well as into their phylogeny and genome organization.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Totiviridae , Micovírus/genética , Totiviridae/genética , Fases de Leitura Aberta , RNA Polimerase Dependente de RNA , Filogenia , Ascomicetos/genética , Genoma Viral , Vírus de RNA/genética , RNA Viral/genética , RNA de Cadeia Dupla
8.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682863

RESUMO

Due to their often age-dependent nature, neurodegenerative diseases impact an increasing portion of modern societies [...].


Assuntos
Epigênese Genética , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética
9.
J Fungi (Basel) ; 8(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448635

RESUMO

Mucor lusitanicus and some other members of the fungal order Mucorales display the phenomenon of morphological dimorphism. This means that these fungi aerobically produce filamentous hyphae, developing a coenocytic mycelium, but they grow in a multipolar yeast-like form under anaerobiosis. Revealing the molecular mechanism of the reversible yeast-hyphal transition can be interesting for both the biotechnological application and in the understanding of the pathomechanism of mucormycosis. In the present study, transcriptomic analyses were carried out after cultivating the fungus either aerobically or anaerobically revealing significant changes in gene expression under the two conditions. In total, 539 differentially expressed genes (FDR < 0.05, |log2FC| ≥ 3) were identified, including 190 upregulated and 349 downregulated transcripts. Within the metabolism-related genes, carbohydrate metabolism was proven to be especially affected. Anaerobiosis also affected the transcription of transporters: among the 14 up- and 42 downregulated transporters, several putative sugar transporters were detected. Moreover, a considerable number of transcripts related to amino acid transport and metabolism, lipid transport and metabolism, and energy production and conversion were proven to be downregulated when the culture had been transferred into an anaerobic atmosphere.

10.
Sci Rep ; 12(1): 5007, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322122

RESUMO

Histone variants are different from their canonical counterparts in structure and are encoded by solitary genes with unique regulation to fulfill tissue or differentiation specific functions. A single H4 variant gene (His4r or H4r) that is located outside of the histone cluster and gives rise to a polyA tailed messenger RNA via replication-independent expression is preserved in Drosophila strains despite that its protein product is identical with canonical H4. In order to reveal information on the possible role of this alternative H4 we epitope tagged endogenous H4r and studied its spatial and temporal expression, and revealed its genome-wide localization to chromatin at the nucleosomal level. RNA and immunohistochemistry analysis of H4r expressed under its cognate regulation indicate expression of the gene throughout zygotic and larval development and presence of the protein product is evident already in the pronuclei of fertilized eggs. In the developing nervous system a slight disequibrium in H4r distribution is observable, cholinergic neurons are the most abundant among H4r-expressing cells. ChIP-seq experiments revealed H4r association with regulatory regions of genes involved in cellular stress response. The data presented here indicate that H4r has a variant histone function.


Assuntos
Cromatina , Drosophila , Animais , Cromatina/genética , Drosophila/genética , Histonas/genética , Nucleossomos , Receptores Histamínicos H4/genética
11.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884540

RESUMO

Methylation of cytosine in CpG dinucleotides is the major DNA modification in mammalian cells that is a key component of stable epigenetic marks. This modification, which on the one hand is reversible, while on the other hand, can be maintained through successive rounds of replication plays roles in gene regulation, genome maintenance, transgenerational epigenetic inheritance, and imprinting. Disturbed DNA methylation contributes to a wide array of human diseases from single-gene disorders to sporadic metabolic diseases or cancer. DNA methylation was also shown to affect several neurodegenerative disorders, including Huntington's disease (HD), a fatal, monogenic inherited disease. HD is caused by a polyglutamine repeat expansion in the Huntingtin protein that brings about a multifaceted pathogenesis affecting several cellular processes. Research of the last decade found complex, genome-wide DNA methylation changes in HD pathogenesis that modulate transcriptional activity and genome stability. This article reviews current evidence that sheds light on the role of DNA methylation in HD.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Proteína Huntingtina/genética , Doença de Huntington/patologia , Processamento de Proteína Pós-Traducional , Animais , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo
12.
Viruses ; 13(11)2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835124

RESUMO

We previously screened the total nucleic acid extracts of 123 Mucor strains for the presence of dsRNA molecules without further molecular analyses. Here, we characterized five novel dsRNA genomes isolated from four different Mucor hiemalis strains with next-generation sequencing (NGS), namely Mucor hiemalis virus 1a (MhV1a) from WRL CN(M) 122; Mucor hiemalis virus 1b (MhV1b) from NRRL 3624; Mucor hiemalis virus 2 (MhV2) from NRRL 3616; and Mucor hiemalis virus 3 (MhV3) and Mucor hiemalis virus (MhV4) from NRRL 3617 strains. Genomes contain two open reading frames (ORF), which encode the coat protein (CP) and the RNA dependent RNA polymerase (RdRp), respectively. In MhV1a and MhV1b, it is predicted to be translated as a fusion protein via -1 ribosomal frameshift, while in MhV4 via a rare +1 (or-2) ribosomal frameshift. In MhV2 and MhV3, the presence of specific UAAUG pentanucleotide motif points to the fact for coupled translation termination and reinitialization. MhV1a, MhV2, and MhV3 are part of the clade representing the genus Victorivirus, while MhV4 is seated in Totivirus genus clade. The detected VLPs in Mucor strains were from 33 to 36 nm in diameter. Hybridization analysis revealed that the dsRNA molecules of MhV1a-MhV4 hybridized to the corresponding molecules.


Assuntos
Vírus de RNA de Cadeia Dupla , Genoma Viral , Mucor/virologia , RNA de Cadeia Dupla , Proteínas Virais/genética , Vírus de RNA de Cadeia Dupla/genética , Vírus de RNA de Cadeia Dupla/isolamento & purificação , RNA Viral
13.
Front Cell Infect Microbiol ; 11: 660347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937100

RESUMO

Mucormycosis is a life-threatening opportunistic infection caused by certain members of the fungal order Mucorales. This infection is associated with high mortality rate, which can reach nearly 100% depending on the underlying condition of the patient. Treatment of mucormycosis is challenging because these fungi are intrinsically resistant to most of the routinely used antifungal agents, such as most of the azoles. One possible mechanism of azole resistance is the drug efflux catalyzed by members of the ATP binding cassette (ABC) transporter superfamily. The pleiotropic drug resistance (PDR) transporter subfamily of ABC transporters is the most closely associated to drug resistance. The genome of Mucor circinelloides encodes eight putative PDR-type transporters. In this study, transcription of the eight pdr genes has been analyzed after azole treatment. Only the pdr1 showed increased transcript level in response to all tested azoles. Deletion of this gene caused increased susceptibility to posaconazole, ravuconazole and isavuconazole and altered growth ability of the mutant. In the pdr1 deletion mutant, transcript level of pdr2 and pdr6 significantly increased. Deletion of pdr2 and pdr6 was also done to create single and double knock out mutants for the three genes. After deletion of pdr2 and pdr6, growth ability of the mutant strains decreased, while deletion of pdr2 resulted in increased sensitivity against posaconazole, ravuconazole and isavuconazole. Our result suggests that the regulation of the eight pdr genes is interconnected and pdr1 and pdr2 participates in the resistance of the fungus to posaconazole, ravuconazole and isavuconazole.


Assuntos
Azóis , Mucor , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Proteínas Fúngicas , Humanos , Testes de Sensibilidade Microbiana
14.
mSystems ; 6(3)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975967

RESUMO

Oral epithelial cells monitor microbiome composition and initiate immune response upon dysbiosis, as in the case of Candida imbalances. Candida species, such as C. albicans and C. parapsilosis, are the most prevalent yeasts in the oral cavity. Comparison of healthy oral epithelial cell responses revealed that while C. albicans infection robustly activated inflammation cascades, C. parapsilosis primarily activated various inflammation-independent pathways. In posttranscriptional regulatory processes, several miRNAs were altered by both species. For C. parapsilosis, the dose of yeast cells directly correlated with changes in transcriptomic responses with higher fungal burdens inducing significantly different and broader changes. MicroRNAs (miRNAs) associated with carbohydrate metabolism-, hypoxia-, and vascular development-related responses dominated with C. parapsilosis infection, whereas C. albicans altered miRNAs linked to inflammatory responses. Subsequent analyses of hypoxia-inducible factor 1α (HIF1-α) and hepatic stellate cell (HSC) activation pathways predicted target genes through which miRNA-dependent regulation of yeast-specific functions may occur, which also supported the observed species-specific responses. Our findings suggest that C. parapsilosis is recognized as a commensal at low doses by the oral epithelium; however, increased fungal burden activates different pathways, some of which overlap with the inflammatory processes robustly induced by C. albicans IMPORTANCE A relatively new topic within the field of immunology involves the role of miRNAs in innate as well as adaptive immune response regulation. In recent years, posttranscriptional regulation of host-pathogenic fungal interactions through miRNAs was also suggested. Our study reveals that the distinct nature of human oral epithelial cell responses toward C. parapsilosis and C. albicans is possibly due to species-specific fine-tuning of host miRNA regulatory processes. The findings of this study also shed new light on the nature of early host cell transcriptional responses to the presence of C. parapsilosis and highlight the species' potential inflammation-independent host activation processes. These findings contribute to our better understanding of how miRNA deregulation at the oral immunological barrier, in noncanonical immune cells, may discriminate between fungal species, particularly Candida species with high or low pathogenic potential.

15.
Sci Rep ; 11(1): 4878, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649489

RESUMO

His4r is the only known variant of histone H4 in Drosophila. It is encoded by the His4r single-copy gene that is located outside of the histone gene cluster and expressed in a different pattern than H4, although the encoded polypeptides are identical. We generated a null mutant (His4rΔ42) which is homozygous viable and fertile without any apparent morphological defects. Heterozygous His4rΔ42 is a mild suppressor of position-effect variegation, suggesting that His4r has a role in the formation or maintenance of condensed chromatin. Under standard conditions loss of His4r has a modest effect on gene expression. Upon heat-stress the induction of the Heat shock protein (HSP) genes Hsp27 and Hsp68 is stronger in His4rΔ42 mutants with concordantly increased survival rate. Analysis of chromatin accessibility after heat shock at a Hsp27 regulatory region showed less condensed chromatin in the absence of His4r while there was no difference at the gene body. Interestingly, preconditioning before heat shock led to increased chromatin accessibility, HSP gene transcription and survival rate in control flies while it did not cause notable changes in His4rΔ42. Thus, our results suggest that His4r might play a role in fine tuning chromatin structure at inducible gene promoters upon environmental stress conditions.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Resposta ao Choque Térmico , Histonas/metabolismo , Animais , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética
16.
PLoS One ; 16(3): e0248654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730081

RESUMO

Annually, agricultural activity produces an enormous amount of plant biomass by-product. Many studies have reported the biomethane potential of agro-industrial wastes, but only a few studies have investigated applying the substrates in both batch and continuous mode. Tomato is one of the most popular vegetables globally; its processing releases a substantial amount of by-product, such as stems and leaves. This study examined the BMP of tomato plant (Solanum lycopersicum Mill. L. cv. Alfred) waste. A comparative test revealed that the BMPs of corn stover, tomato waste,and their combination were approximately the same, around 280 mL methane/g Volatile Solid. In contrast, the relative biogas production decreased in the presence of tomato waste in a continuous mesophilic anaerobic digestion system; the daily biogas productions were 860 ± 80, 290 ± 50, and 570 ± 70 mL biogas/gVolatile Solid/day in the case of corn stover, tomato waste, and their mixture, respectively. The methane content of biogas was around 46-48%. The fermentation parameters of the continuous AD experiments were optimal in all cases; thus, TW might have an inhibitory effect on the microbial community. Tomato plant materials contain e.g. flavonoids, glycoalkaloids (such as tomatine and tomatidine), etc. known as antimicrobial and antifungal agents. The negative effect of tomatine on the biogas yield was confirmed in batch fermentation experiments. Metagenomic analysis revealed that the tomato plant waste caused significant rearrangements in the microbial communities in the continuously operated reactors. The results demonstrated that tomato waste could be a good mono-substrate in batch fermentations or a co-substrate with corn stover in a proper ratio in continuous anaerobic fermentations for biogas production. These results also point to the importance of running long-term continuous fermentations to test the suitability of a novel biomass substrate for industrial biogas production.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Produção Agrícola , Metano/biossíntese , Solanum lycopersicum/química , Anaerobiose , Fermentação , Solanum lycopersicum/microbiologia , Metagenômica , Microbiota/genética , Zea mays/química , Zea mays/microbiologia
17.
mSphere ; 5(5)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115837

RESUMO

The number of invasive infections caused by Candida species is increasing worldwide. The incidence of candidiasis cases caused by non-albicans Candida species, such as Candida parapsilosis, is also increasing, and non-albicans Candida species are currently responsible for more invasive infections than C. albicans Additionally, while the development of azole resistance during invasive disease with C. albicans remains uncommon, azole-resistant C. parapsilosis strains are frequently isolated in the hospital setting. In this study, we applied direct selection to generate azole-adapted and azole-evolved C. parapsilosis strains in order to examine the effect of azole resistance development on fungal viability and pathogenesis progression. Depending on the drug applied, the different evolved strains developed distinct cross-resistance patterns: the fluconazole-evolved (FLUEVO) and voriconazole-evolved (VOREVO) strains gained resistance to fluconazole and voriconazole only, while posaconazole evolution resulted in cross-resistance to all azoles and the posaconazole-evolved (POSEVO) strains showed higher echinocandin MIC values than the FLUEVO and VOREVO strains. Whole-genome sequencing results identified the development of different resistance mechanisms in the evolved strains: the FLUEVO and VOREVO strains harbored amino acid substitutions in Mrr1p (A808T and N394Y, respectively), and the POSEVO strain harbored an amino acid change in Erg3p (D14Y). By revealing increased efflux pump activity in both the FLUEVO and the VOREVO strains, along with the altered sterol composition of the POSEVO strain, we now highlight the impact of the above-mentioned amino acid changes in C. parapsilosis azole resistance development. We further revealed that the virulence of this species was only slightly or partially affected by fluconazole and voriconazole adaptation, while it significantly decreased after posaconazole adaptation. Our results suggest that triazole adaptation can result in azole cross-resistance and that this process may also result in virulence alterations in C. parapsilosis, depending on the applied drug.IMPORTANCECandida parapsilosis causes life-threatening fungal infections. In the last 2 decades, the increasing number of azole-resistant C. parapsilosis clinical isolates has been attributable to the overuse and misuse of fluconazole, the first-line antifungal agent most commonly used in several countries. To date, the range of applicable antifungal drugs is limited. As a consequence, it is essential to understand the possible mechanisms of antifungal resistance development and their effect on virulence in order to optimize antifungal treatment strategies in the clinical setting. Our results revealed that the prolonged exposure to azoles resulted not only in azole resistance but also in cross-resistance development. Our data further indicate that resistance development may occur through different mechanisms that can also alter the virulence of C. parapsilosis These results highlight the consequences of prolonged drug usage and suggest the need for developing alternative antifungal treatment strategies in clinical practice.


Assuntos
Antifúngicos/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/patogenicidade , Farmacorresistência Fúngica/genética , Estresse Fisiológico/efeitos dos fármacos , Triazóis/farmacologia , Animais , Candida parapsilosis/genética , Candidíase/microbiologia , Evolução Molecular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
18.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019674

RESUMO

The plant-specific receptor-like cytoplasmic kinases (RLCKs) form a large, poorly characterized family. Members of the RLCK VI_A class of dicots have a unique characteristic: their activity is regulated by Rho-of-plants (ROP) GTPases. The biological function of one of these kinases was investigated using a T-DNA insertion mutant and RNA interference. Loss of RLCK VI_A2 function resulted in restricted cell expansion and seedling growth. Although these phenotypes could be rescued by exogenous gibberellin, the mutant did not exhibit lower levels of active gibberellins nor decreased gibberellin sensitivity. Transcriptome analysis confirmed that gibberellin is not the direct target of the kinase; its absence rather affected the metabolism and signalling of other hormones such as auxin. It is hypothesized that gibberellins and the RLCK VI_A2 kinase act in parallel to regulate cell expansion and plant growth. Gene expression studies also indicated that the kinase might have an overlapping role with the transcription factor circuit (PIF4-BZR1-ARF6) controlling skotomorphogenesis-related hypocotyl/cotyledon elongation. Furthermore, the transcriptomic changes revealed that the loss of RLCK VI_A2 function alters cellular processes that are associated with cell membranes, take place at the cell periphery or in the apoplast, and are related to cellular transport and/or cell wall reorganisation.


Assuntos
Arabidopsis/genética , Cotilédone/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Proteínas Serina-Treonina Quinases/genética , Plântula/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cotilédone/efeitos dos fármacos , Cotilédone/enzimologia , Cotilédone/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/enzimologia , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Mutagênese Insercional , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
19.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466450

RESUMO

Ischemic preconditioning (IPre) reduces ischemia/reperfusion (I/R) injury in the heart. The non-coding microRNA miR-125b-1-3p has been demonstrated to play a role in the mechanism of IPre. Hypercholesterolemia is known to attenuate the cardioprotective effect of preconditioning; nevertheless, the exact underlying mechanisms are not clear. Here we investigated, whether hypercholesterolemia influences the induction of miR-125b-1-3p by IPre. Male Wistar rats were fed with a rodent chow supplemented with 2% cholesterol and 0.25% sodium-cholate hydrate for 8 weeks to induce high blood cholesterol levels. The hearts of normo- and hypercholesterolemic animals were then isolated and perfused according to Langendorff, and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPre (3 × 5 min I/R cycles applied before index ischemia). IPre significantly reduced infarct size in the hearts of normocholesterolemic rats; however, IPre was ineffective in the hearts of hypercholesterolemic animals. Similarly, miR-125b-1-3p was upregulated by IPre in hearts of normocholesterolemic rats, while in the hearts of hypercholesterolemic animals IPre failed to increase miR-125b-1-3p significantly. Phosphorylation of cardiac Akt, ERK, and STAT3 was not significantly different in any of the groups at the end of reperfusion. Based on these results we propose here that hypercholesterolemia attenuates the upregulation of miR-125b-1-3p by IPre, which seems to be associated with the loss of cardioprotection.


Assuntos
Colesterol/sangue , Hipercolesterolemia/metabolismo , Precondicionamento Isquêmico Miocárdico , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Hipercolesterolemia/complicações , Masculino , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/terapia , Miocárdio/metabolismo , Ratos , Ratos Wistar , Regulação para Cima
20.
J Nanobiotechnology ; 18(1): 18, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964403

RESUMO

BACKGROUND: Although accumulating evidence suggests that the crosstalk between malignant cells and cancer-associated fibroblasts (CAFs) actively contributes to tumour growth and metastatic dissemination, therapeutic strategies targeting tumour stroma are still not common in the clinical practice. Metal-based nanomaterials have been shown to exert excellent cytotoxic and anti-cancerous activities, however, their effects on the reactive stroma have never been investigated in details. Thus, using feasible in vitro and in vivo systems to model tumour microenvironment, we tested whether the presence of gold, silver or gold-core silver-shell nanoparticles exerts anti-tumour and metastasis suppressing activities by influencing the tumour-supporting activity of stromal fibroblasts. RESULTS: We found that the presence of gold-core silver-shell hybrid nanomaterials in the tumour microenvironment attenuated the tumour cell-promoting behaviour of CAFs, and this phenomenon led to a prominent attenuation of metastatic dissemination in vivo as well. Mechanistically, transcriptome analysis on tumour-promoting CAFs revealed that silver-based nanomaterials trigger expressional changes in genes related to cancer invasion and tumour metastasis. CONCLUSIONS: Here we report that metal nanoparticles can influence the cancer-promoting activity of tumour stroma by affecting the gene expressional and secretory profiles of stromal fibroblasts and thereby altering their intrinsic crosstalk with malignant cells. This potential of metal nanomaterials should be exploited in multimodal treatment approaches and translated into improved therapeutic outcomes.


Assuntos
Antineoplásicos/química , Fibroblastos Associados a Câncer/efeitos dos fármacos , Nanopartículas Metálicas/química , Metástase Neoplásica/tratamento farmacológico , Ligas/química , Animais , Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Progressão da Doença , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Ouro/química , Humanos , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos BALB C , Metástase Neoplásica/patologia , Transplante de Neoplasias , Prata/química , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...